Website hiện chỉ đăng tải bài viết và cung cấp dịch vụ, không hỗ trợ các vấn đề ngoài dịch vụ.
😄

Cách loại biến trong phân tích Cronbach Alpha trên SPSS

Phạm Lộc Blog

Loại biến trong kiểm định Cronbach Alpha khá quan trọng bởi nó giúp chúng ta loại bỏ đi các biến quan sát không phù hợp làm giảm độ tin cậy thang đo chung. Vậy khi nào chúng ta loại biến, tiêu chuẩn nào quyết định một biến quan sát có ý nghĩa trong phân tích Cronbach Alpha, chúng ta sẽ có câu trả lời ở bài viết này!

Cách loại biến trong phân tích Cronbach Alpha trên SPSS

1. Bản chất việc biến bị loại ở Cronbach Alpha

Một thang đo của một nhân tố là một tập hợp nhiều biến quan sát có mối tương quan với nhau, cùng thể hiện một tính chất. Thang đo sẽ có độ tin cậy cao khi tương quan của các biến quan sát càng lớn và thuận chiều, nghĩa là các biến quan sát càng cùng thể hiện một tính chất của yếu tố mẹ. Nhưng không phải lúc nào chúng ta cũng đều xây dựng một thang đo hoàn hảo khi các biến quan sát đều tốt. Có thể sẽ xuất hiện những biến quan sát không tốt, thiếu sự tương quan với các biến quan sát còn lại, những biến này thường làm cho độ tin cậy thang đo của thang đo bị giảm. 

Kiểm định Cronbach Alpha là một công cụ phổ biến dùng để phát hiện biến quan sát không tốt và đánh giá thang đo có đảm bảo độ tin cậy tiêu chuẩn hay không. Chúng ta có thể sử dụng công cụ này trên phần mềm SPSS

Như vậy, việc biến bị loại ở bước phân tích Cronbach Alpha là bởi vì biến đó không có sự tương quan chặt chẽ với các biến quan sát còn lại trong cùng một nhóm (cùng một thang đo).

2. Tiêu chí trong phân tích Cronbach Alpha trên SPSS

Theo Nunnally (1978) , một thang đo tốt nên có độ tin cậy Cronbach’s Alpha từ 0.7 trở lên. Hair và cộng sự (2009)  cũng cho rằng, một thang đo đảm bảo tính đơn hướng và đạt độ tin cậy nên đạt ngưỡng Cronbach’s Alpha từ 0.7 trở lên, tuy nhiên, với tính chất là một nghiên cứu khám phá sơ bộ, ngưỡng Cronbach’s Alpha là 0.6 có thể chấp nhận được. Hệ số Cronbach's Alpha càng cao thể hiện độ tin cậy của thang đo càng cao.

Một chỉ số quan trọng khác đó là Corrected Item – Total Correlation. Giá trị này biểu thị mối tương quan giữa từng biến quan sát với các biến còn lại trong thang đo. Nếu biến quan sát có sự tương quan thuận càng mạnh với các biến khác trong thang đo, giá trị Corrected Item – Total Correlation càng cao, biến quan sát đó càng tốt. Cristobal và cộng sự (2007)  cho rằng, một thang đo tốt khi các biến quan sát có giá trị Corrected Item – Total Correlation từ 0.3 trở lên. Như vậy, khi thực hiện kiểm định độ tin cậy Cronbach’s Alpha, biến quan sát có hệ số Corrected Item – Total Correlation nhỏ hơn 0.3, cần xem xét loại bỏ biến quan sát đó. Hệ số Corrected Item – Total Correlation càng cao, biến quan sát đó càng chất lượng.

    Chúng ta cũng cần chú ý đến giá trị của cột Cronbach's Alpha if Item Deleted, cột này biểu diễn hệ số Cronbach's Alpha nếu loại biến đang xem xét. Mặc dù đây không phải là một tiêu chuẩn phổ biến để đánh giá độ tin cậy thang đo, tuy nhiên, nếu giá trị Cronbach's Alpha if Item Deleted lớn hơn hệ số Cronbach Alpha của nhóm thì chúng ta nên cân nhắc xem xét biến quan sát này tùy vào từng trường hợp. Chi tiết bạn xem tại bài viết Xử lý trường hợp Cronbach’s Alpha if Item Deleted lớn hơn Cronbach's Alpha của nhóm. Hệ số Cronbach's Alpha if Item Deleted càng nhỏ, biến quan sát càng chất lượng.

    Không có khái niệm Cronbach's Alpha của từng biến quan sát. Các bạn cần đọc kỹ lý thuyết ở trên để tránh hiểu sai lệch khái niệm. Một số bạn đang nhầm lẫn giá trị Cronbach's Alpha if Item Deleted là giá trị Cronbach's Alpha của từng biến quan sát nên so sánh với ngưỡng 0.6 và kết luận. Điều này là sai hoàn toàn.

    Tóm lại khi đánh giá một kết quả Cronbach's Alpha chúng ta cần đánh giá 2 tiêu chí sau:

    #1. Hệ số Cronbach's Alpha của thang đo cần trên 0.6 (hoặc 0.7 nếu bạn đánh giá gắt hơn).
    #2. Hệ số Corrected Item – Total Correlation của từng biến quan sát càng cao càng tốt.

    3. Loại biến trong phân tích Cronbach Alpha trên SPSS

    Dưới đây mình sẽ phân tích mẫu cho 4 thang đo đại diện cho 4 trường hợp phổ biến hay gặp khi thực hiện kiểm định Cronbach Alpha trên SPSS:

    Trường hợp 1: Thang đo đạt độ tin cậy, biến quan sát có ý nghĩa

    Thực hiện phân tích Cronbach's Alpha cho thang đo TN, đưa 5 biến quan sát TN1-TN5 vào mục Items bên phải. Tiếp theo chọn vào Statistics…

    Phân tích Cronbach Alpha SPSS

    Trong tùy chọn Statistics, các bạn tích vào các mục giống như hình. Sau đó chọn Continue để cài đặt được áp dụng.

    Phân tích Cronbach Alpha SPSS

    Sau khi nhấp Continue, SPSS sẽ quay về giao diện ban đầu, các bạn nhấp chuột vào OK để xuất kết quả ra Output:

    Phân tích Cronbach Alpha SPSS

    Kết quả kiểm định độ tin cậy thang đo Cronbach’s Alpha của thang đo TN như sau:

    Phân tích Cronbach Alpha SPSS

    → Kết quả kiểm định cho thấy: (1) hệ số độ tin cậy thang đo Cronbach's Alpha của TN bằng 0.790 > 0.6 và (2) các biến quan sát đều có tương quan biến - tổng (Corrected Item – Total Correlation) lớn hơn 0.3. Như vậy thang đo đạt độ tin cậy, các biến quan sát đều có ý nghĩa giải thích tốt cho nhân tố TN.

    Dịch nghĩa các khái niệm:
    • Cronbach's Alpha: Hệ số Cronbach's Alpha
    • N of Items: Số lượng biến quan sát
    • Scale Mean if Item Deleted: Trung bình thang đo nếu loại biến
    • Scale Variance if Item Deleted: Phương sai thang đo nếu loại biến
    • Corrected Item-Total Correlation: Tương quan biến tổng
    • Cronbach's Alpha if Item Deleted: Hệ số Cronbach's Alpha nếu loại biến

    Trường hợp 2: Thang đo đạt độ tin cậy, có biến quan sát không có ý nghĩa

    Thực hiện phân tích Cronbach's Alpha cho thang đo DT tương tự như thang đo TN, kết quả có được như sau:

    Phân tích Cronbach Alpha SPSS

    → Kết quả kiểm định cho thấy: (1) hệ số độ tin cậy thang đo Cronbach's Alpha của DT bằng 0.684 > 0.6 và (2) biến quan sát DT1 có tương quan biến - tổng (Corrected Item – Total Correlation) bằng 0.283 < 0.3. Biến quan sát DT1 giải thích ý nghĩa rất yếu cho nhân tố DT nên sẽ được loại bỏ khỏi thang đo. Phân tích Cronbach's Alpha lần hai.

    Phân tích Cronbach Alpha SPSS

    → Kết quả kiểm định cho thấy: (1) hệ số độ tin cậy thang đo Cronbach's Alpha của DT bằng 0.790 > 0.6 và (2) các biến quan sát đều có tương quan biến - tổng (Corrected Item – Total Correlation) lớn hơn 0.3. Như vậy thang đo đạt độ tin cậy, các biến quan sát đều có ý nghĩa giải thích tốt cho nhân tố TN.

    Trường hợp 3: Thang đo đạt độ tin cậy, biến quan sát có ý nghĩa, có hệ số Cronbach's Alpha if Item Deleted lớn hơn Cronbach's Alpha của thang đo

    Thực hiện phân tích Cronbach's Alpha cho thang đo LD, kết quả có được như sau:

    Phân tích Cronbach Alpha SPSS

    → Biến quan sát LD3 có hệ số Cronbach's Alpha if Item Deleted bằng 0.768 lớn hơn hệ số Cronbach's Alpha của thang đo LD là 0.749. Tuy nhiên, hệ số tương quan biến tổng của biến là 0.342 > 0.3 và Cronbach's Alpha của thang đo đã trên 0.6, thậm chí còn trên cả 0.7 rồi. Do vậy chúng ta không cần loại biến LD3 trong trường hợp này. 

    Trường hợp 4: Thang đo đạt độ tin cậy, biến quan sát có ý nghĩa, có hệ số Cronbach's Alpha if Item Deleted lớn hơn Cronbach's Alpha của thang đo

    Thực hiện phân tích Cronbach's Alpha cho thang đo DK, kết quả có được như sau:

    → Kết quả kiểm định cho thấy: (1) hệ số độ tin cậy thang đo Cronbach's Alpha của DK bằng 0.435 < 0.6 và (2) hệ số Cronbach's Alpha if Item Deleted của tất cả các biến quan sát đều nhỏ hơn 0.6. Thang đo DK không đạt được độ tin cậy tối thiểu nên sẽ được loại bỏ khỏi các phân tích sau đó.

    Trường hợp này chúng ta xét đến hệ số Cronbach's Alpha if Item Deleted bởi vì độ tin cậy của thang đo chỉ là 0.435, dưới mức 0.6. Chúng ta không vội kết luận là thang đo không đạt được độ tin cậy mà sẽ tiếp tục nhìn vào Cronbach's Alpha if Item Deleted. Bởi Cronbach's Alpha if Item Deleted là giá trị Cronbach's Alpha mới của thang đo nếu biến quan sát đó được loại bỏ đi. Giả sử trong tình huống này biến quan sát DK3 có Cronbach's Alpha if Item Deleted lớn hơn 0.6, chúng ta sẽ loại bỏ biến quan sát DK3 và phân tích lại Cronbach's Alpha lần hai. Khi đó, hệ số Cronbach's Alpha của thang đo DK ở lần hai sẽ nhận giá trị mới đúng bằng giá trị Cronbach's Alpha if Item Deleted của biến DK3 và đạt điều kiện trên 0.6, thang đo đảm bảo độ tin cậy. Nhưng trong ví dụ trên thì toàn bộ các biến quan sát đều có Cronbach's Alpha if Item Deleted nhỏ hơn 0.6 nên dù có loại biến quan sát đi thì thang đo vẫn không đảm bảo độ tin cậy.

    ** LƯU Ý:

    • Nếu thang đo có hệ số Cronbach's Alpha dưới 0.6, chúng ta chưa vội kết luận thang đo không có độ tin cậy mà cần kiểm tra và loại hết biến quan sát có giá trị Cronbach's Alpha if Item Deleted cao hơn mức 0.6. Đến khi loại hết rồi mà hệ số Cronbach's Alpha vẫn dưới 0.6 thì mới kết luận.
    • Nếu hệ số Cronbach's Alpha của nhóm đã đủ tiêu chuẩn thì việc xuất hiện biến quan sát có Cronbach's Alpha if Item Deleted lớn hơn Cronbach's Alpha của nhóm nhưng tương quan biến tổng lớn hơn 0.3 thì chúng ta không cần loại biến quan sát đó đi.
    • Nếu hệ số Cronbach's Alpha của nhóm chưa đủ tiêu chuẩn thì việc xuất hiện biến quan sát có Cronbach's Alpha if Item Deleted lớn hơn Cronbach's Alpha của nhóm nhưng tương quan biến tổng lớn hơn 0.3 thì chúng ta nên loại biến quan sát đó đi để cải thiện độ tin cậy thang đo cho tới khi hệ số Cronbach's Alpha của nhóm đạt tiêu chuẩn.
    • Nếu hệ số Cronbach's Alpha của nhóm chưa đủ tiêu chuẩn, chúng ta đã loại các biến quan sát có Cronbach's Alpha if Item Deleted lớn hơn Cronbach's Alpha của nhóm nhưng thang đo vẫn không đủ tiêu chuẩn. Khi đó, thang đo không đảm bảo độ tin cậy cho nghiên cứu, cần loại bỏ cả thang đo này.
    • Nếu sự chênh lệch giữa Cronbach's Alpha của nhóm với Cronbach's Alpha if Item Deleted của biến quan sát là đáng kể từ 0.3 trở lên. Chúng ta sẽ loại biến quan sát đó để tăng thêm độ tin cậy của thang đo.

    Nếu bạn gặp những vấn đề như thang đo không đảm bảo độ tin cậy, biến bị loại quá nhiều,... khi thực hiện kiểm định độ tin cậy thang đo Cronbach Alpha,... bạn có thể tham khảo dịch vụ SPSS của Phạm Lộc Blog hoặc liên hệ trực tiếp email xulydinhluong@gmail.com.

    Đăng nhận xét

    gấu bông si